The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI
نویسندگان
چکیده
An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations within each imaging voxel, and a number of methods have been proposed to reconstruct the orientation distribution function based on sampling three-dimensional q-space. In the q-space formalism, very short (infinitesimal) gradient pulses are the basic requirement to obtain the true spin displacement probability density function. On current clinical MR systems however, the diffusion gradient pulse duration (delta) is inevitably finite due to the limit on the achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) requirement has been a recurrent criticism for fibre orientation estimation based on the q-space approach. In this study, the influence of a finite delta on the DW signal measured as a function of gradient direction is described theoretically and demonstrated through simulations and experimental models. Our results suggest that the current practice of using long delta for DW imaging on human clinical MR scanners, which is enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations. For a given b-value, the prolongation of delta is advantageous for estimating fibre orientations for two reasons: first, it leads to a boost in DW signal in the transverse plane of the fibre. Second, it stretches out the shape of the measured diffusion profile, which improves the contrast between DW orientations. This is especially beneficial for resolving crossing fibres, as this contrast is essential to discriminate between different fibre directions.
منابع مشابه
Evaluation of Angular Uncertainties of q-space Diffusion MRI Under Finite Gradient Pulse Widths : A Phantom Study
Introduction Q-space diffusion-weighted (DW) MR imaging is a valuable technique to evaluate the physiological state and the geometry of tissues. However, in clinical DW imaging protocols, the essential requirement of a short pulse gradient (SPG) is not achievable due to the limited gradient intensity of current MR systems. According to previous studies, finite diffusion gradient pulse widths ar...
متن کاملDiffusion Microscopist Simulator
Diffusion magnetic resonance imaging (dMRI) has made a significant breakthrough in neurological disorders and brain research thanks to its exquisite sensitivity to tissue cytoarchitecture. However, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI data. ...
متن کاملDiffusion Gradient Calibration Influences the Accuracy of Fibre Orientation Density Function Estimation: Validation by Efficiency Measure
Introduction. Diffusion-weighted (DW) MRI provides important information regarding the arrangement of white matter fibres. However, imperfections in the DW gradients may cause errors in the estimation of diffusion parameters. The sources of the gradient errors are various and may arise from long-term eddy currents, background gradients, imaging gradients, and spatial non-linearity and non-unifo...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملAdapting the Kärger model to account for finite diffusion-encoding pulses in diffusion MRI
Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the diffusion characteristics of a sample via the application of magnetic field gradient pulses. If the imaging voxel can be divided into different Gaussian diffusion compartments with inter-compartment exchange governed by linear kinetics, then the dMRI signal can be described by the Kärger model, which is a well-kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2010